metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[copper(II)-di- μ_2 -1,1-azidocopper(II)- μ_2 -acetato- μ_2 -1,1-azido- μ_2 -(dimethyl sulfoxide)-copper(II)-di- μ_2 -1,1azido]

Kelan Li, Feihua Luo, Xuegang Song and Zonggiu Hu*

Department of Chemistry, Central People's Republic of China Normal University, Wuhan, Hubei 430079, People's Republic of China Correspondence e-mail: zghu@mail.ccnu.edu.cn

Received 8 November 2007; accepted 14 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.099; data-to-parameter ratio = 16.6.

The title crystal structure, $[Cu_3(C_2H_3O_2)_2(N_3)_4(C_2H_6OS)_2]_n$, consists of one-dimensional chains in which there are two independent Cu^{II} ions. One of the Cu^{II} ions lies on a crystallographic inversion center and is in a slightly distorted octahedral coordination environment while the other Cu^{II} ion is coordinated in a distorted square-pyramidal environment.

Related literature

For related literature, see: Goher et al. (1999, 2002); Liu et al. (2007); Song et al. (2007).

Experimental

Crystal data

 $[Cu_3(C_2H_3O_2)_2(N_3)_4(C_2H_6OS)_2]$ $M_r = 633.13$ Triclinic, $P\overline{1}$ a = 8.5205 (9) Å b = 8.6624 (9) Å c = 9.4999 (10) Å $\alpha = 90.386 \ (2)^{\circ}$ $0.30 \times 0.20 \times 0.20$ mm $\beta = 112.687 (1)^{\circ}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 3467 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	145 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
2404 reflections	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

 $\gamma = 116.261 \ (1)^{\circ}$

Z = 1

V = 566.66 (10) Å³

Mo $K\alpha$ radiation

2404 independent reflections 2182 reflections with $I > 2\sigma(I)$

 $\mu = 3.02 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.060$

Table 1 Selected bond lengths (Å).

Cu1-O1	1.933 (2)	Cu1-O3	2.351 (2)
Cu1-N4 ⁱ	1.970 (2)	Cu2-O2	1.936 (2)
Cu1-N1	1.986 (3)	Cu2-N4	1.995 (2)
Cu1-N1 ⁱⁱ	2.002 (3)	Cu2-O3	2.542 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 2, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

This work was supported by the National Education Government of China (grant No. 20772042).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2563).

References

Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.

Goher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2002). Polyhedron, 21, 1871-1876.

Goher, M. A. S. & Mautner, F. A. (1999). J. Chem. Soc. Dalton Trans. pp. 1535-1536.

Liu, F. C., Zeng, Y. F., Zhao, J. P., Hu, B. W., Bu, X. H., Ribas, J. & Batten, S. R. (2007). Inorg. Chem. Commun. 10, 129-132.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Song, X. Y., Li, W., Li, L. C., Liao, D. Z. & Jiang, Z. H. (2007). Inorg. Chem. Commun. 10, 567-570.

supplementary materials

Acta Cryst. (2007). E63, m3156 [doi:10.1107/S1600536807059247]

catena-Poly[copper(II)-di- μ_2 -1,1-azido-copper(II)- μ_2 -acetato- μ_2 -1,1-azido- μ_2 -(dimethyl sulfoxide)-copper(II)-di- μ_2 -1,1-azido]

K. Li, F. Luo, X. Song and Z. Hu

Comment

The crystal structure and some properties of Cu(II)-azido coordination polymers have been previously reported (Goher *et al.*, 1999; Goher *et al.*, 2002; Liu *et al.*, 2007; Song *et al.*, 2007). We report here the synthesis and crystal structure of the title one-dimensional Copper(II)-azido coordination polymer(I) (Fig. 1). In (I) one unique Cu^{II} atom is six-coordinated while the other is is five-coordinated. Crystallographically independent Cu^{II} atoms are bridged by two O atoms from acetate ligands, one μ_2 -O atom from a DMSO ligand and one μ_2 -N atom of an azido ion, while the symmetry related Cu^{II} atoms are bridged by two μ_2 -N atoms from two azido ligands to from a one-dimensional polymer. In the absence of any direction specific interactions the the crystal structure is stabilized by Van der Waals interactions.

Experimental

To a solution of $Cu(OAc)_2(0.14 \text{ g}, 0.6 \text{ mmol})$ in Dimethyl sulphoxide (3 ml) a suspension of sodium azide(0.039 g, 0.6 mmol) in the ethanol (15 ml) was added and the mixture was stirred for 2 h at 333 K. The solution was filtered after cooled and allowed to stand at room temperature without disturbing, black crystals of the title compound were obtained after about 3 weeks.

Refinement

After being located in a difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms with C—H = 0.96Å and U_{iso} (H)= $1.5U_{eq}$ (C).

Figures

Fig. 1. Part of the one dimensional chain of the title compound showing 30% probability displacement ellipsoids. H atoms are not included [symmetry codes: (a) -x + 1, -y + 1, -z; (b) -x + 2, -y + 2, -z].

$catena - Poly[copper(II)-di-\mu_2-1,1-azido-copper(II)-\mu_2-acetato-\mu_2-1,1-azido-\mu_2-(dimethyl sulfoxide)-copper(II)-di-\mu_2-1,1-azido]$

Crystal data [Cu₃(C₂H₃O₂)₂(N₃)₄(C₂H₆OS)₂]

Z = 1

$M_r = 633.13$	$F_{000} = 317$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.855 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.5205 (9) Å	Cell parameters from 2542 reflections
b = 8.6624 (9) Å	$\theta = 2.4 - 27.0^{\circ}$
c = 9.4999 (10) Å	$\mu = 3.02 \text{ mm}^{-1}$
$\alpha = 90.386 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 112.687 \ (1)^{\circ}$	Block, black
$\gamma = 116.261 \ (1)^{\circ}$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
$V = 566.66 (10) \text{ Å}^3$	

Data collection

Bruker SMART-CCD diffractometer	2182 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.060$
Monochromator: graphite	$\theta_{\rm max} = 27.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.4^{\circ}$
ϕ and ω scans	$h = -10 \rightarrow 7$
Absorption correction: none	$k = -7 \rightarrow 11$
3467 measured reflections	$l = -10 \rightarrow 12$
2404 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 0.3521P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
2404 reflections	$\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$
145 parameters	$\Delta \rho_{min} = -0.65 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*- factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.81687 (5)	0.81565 (4)	-0.06003 (4)	0.03025 (14)
Cu2	0.5000	0.5000	0.0000	0.03156 (15)
C1	0.7810 (8)	1.1353 (5)	0.2360 (6)	0.0673 (12)
H1A	0.8966	1.1839	0.2199	0.101*
H1B	0.8111	1.1893	0.3382	0.101*
H1C	0.6854	1.1577	0.1586	0.101*
C2	0.4761 (7)	0.8594 (7)	0.2395 (6)	0.0707 (13)
H2A	0.4049	0.9054	0.1643	0.106*
H2B	0.5099	0.9132	0.3429	0.106*
H2C	0.3974	0.7341	0.2218	0.106*
C3	0.2979 (6)	0.5365 (6)	-0.4771 (4)	0.0630 (12)
H3A	0.2879	0.4330	-0.5259	0.095*
H3B	0.3458	0.6318	-0.5264	0.095*
H3C	0.1722	0.5130	-0.4879	0.095*
C4	0.4350 (5)	0.5860 (4)	-0.3071 (4)	0.0361 (6)
N1	1.0712 (4)	0.9551 (4)	0.1239 (3)	0.0449 (7)
N2	1.1240 (4)	0.9351 (4)	0.2578 (3)	0.0421 (6)
N3	1.1756 (6)	0.9171 (6)	0.3806 (4)	0.0691 (11)
N4	0.2460 (4)	0.4183 (3)	0.0089 (3)	0.0328 (5)
N5	0.1232 (4)	0.4496 (4)	-0.0825 (3)	0.0379 (6)
N6	0.0095 (5)	0.4816 (5)	-0.1649 (5)	0.0624 (9)
01	0.6009 (3)	0.7171 (3)	-0.2653 (3)	0.0432 (6)
O2	0.3755 (3)	0.4928 (3)	-0.2207 (3)	0.0406 (5)
O3	0.6177 (4)	0.8295 (3)	0.0499 (3)	0.0430 (5)
S1	0.68907 (12)	0.90584 (11)	0.22039 (10)	0.0401 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0237 (2)	0.0250 (2)	0.0280 (2)	0.00378 (15)	0.00743 (15)	0.00848 (14)
Cu2	0.0225 (3)	0.0298 (3)	0.0332 (3)	0.0057 (2)	0.0115 (2)	0.0083 (2)
C1	0.080 (3)	0.0306 (19)	0.068 (3)	0.009 (2)	0.031 (2)	-0.0018 (18)
C2	0.057 (3)	0.079 (3)	0.062 (3)	0.014 (2)	0.035 (2)	-0.008 (2)
C3	0.046 (2)	0.071 (3)	0.0320 (18)	0.007 (2)	0.0030 (16)	0.0070 (17)
C4	0.0317 (15)	0.0350 (16)	0.0304 (14)	0.0103 (13)	0.0097 (12)	0.0041 (12)
N1	0.0338 (14)	0.0375 (15)	0.0345 (14)	0.0031 (12)	0.0040 (11)	0.0176 (11)
N2	0.0356 (14)	0.0370 (15)	0.0372 (15)	0.0090 (12)	0.0101 (12)	0.0122 (11)
N3	0.071 (2)	0.076 (3)	0.0393 (18)	0.026 (2)	0.0150 (17)	0.0256 (17)
N4	0.0251 (12)	0.0272 (12)	0.0428 (14)	0.0099 (10)	0.0148 (11)	0.0109 (10)
N5	0.0316 (13)	0.0317 (13)	0.0458 (15)	0.0109 (11)	0.0175 (12)	0.0118 (11)
N6	0.052 (2)	0.070 (2)	0.073 (2)	0.0381 (19)	0.0230 (18)	0.0342 (19)
O1	0.0344 (12)	0.0334 (11)	0.0305 (11)	-0.0018 (10)	0.0059 (9)	0.0056 (9)

supplementary materials

O2 O3	0.0282 (11) 0.0450 (13)	0.0391 (12) 0.0400 (13)	0.0337 (11) 0.0407 (12)	0.0031 (10) 0.0177 (11)	0.0094 (9) 0.0188 (11)	0.0067 (9) 0.0008 (10)
S 1	0.0395 (4)	0.0351 (4)	0.0384 (4)	0.0163 (4)	0.0118 (3)	0.0031 (3)
Geometric param	neters (Å, °)					
Cu1—O1		1.933 (2)	С2—Н	2B	0.96	00
Cu1—N4 ⁱ		1.970 (2)	С2—Н	2C	0.96	00
Cu1—N1		1.986 (3)	С3—С	4	1.50	0 (4)
Cu1—N1 ⁱⁱ		2.002 (3)	С3—Н	3A	0.96	00
Cu1—O3		2.351 (2)	С3—Н	3B	0.96	00
Cu2—O2		1.936 (2)	С3—Н	3C	0.96	00
Cu2—O2 ⁱ		1.936 (2)	C4—0	2	1.24	5 (4)
Cu2—N4 ⁱ		1.995 (2)	C4—0	1	1.25	9 (4)
Cu2—N4		1.995 (2)	N1—N	12	1.21	7 (4)
Cu2—O3		2.542 (2)	N1—C	u1 ⁱⁱ	2.00	2 (3)
C1—S1		1.765 (4)	N2—N	13	1.11	6 (4)
C1—H1A		0.9600	N4—N	15	1.21	5 (4)
C1—H1B		0.9600	N4—C	u1 ⁱ	1.97	0 (2)
C1—H1C		0.9600	N5—N	16	1.13	3 (4)
C2—S1		1.760 (5)	O3—S	1	1.51	7 (2)
C2—H2A		0.9600				
O1—Cu1—N4 ⁱ		92.49 (11)	H2A—	-C2—H2C	109.	5
O1—Cu1—N1		166.25 (11)	H2B—	-C2—H2C	109.	5
N4 ⁱ —Cu1—N1		98.17 (11)	C4—C	3—НЗА	109.	5
O1—Cu1—N1 ⁱⁱ		89.72 (10)	C4—C	3—Н3В	109.	5
N4 ⁱ —Cu1—N1 ⁱⁱ		165.71 (13)	H3A—	-C3—H3B	109.	5
N1—Cu1—N1 ⁱⁱ		77.84 (12)	C4—C	3—НЗС	109.	5
O1—Cu1—O3		91.09 (10)	H3A—	-C3—H3C	109.	5
N4 ⁱ —Cu1—O3		87.19 (10)	H3B—	-C3—H3C	109.	5
N1—Cu1—O3		98.06 (12)	02—0	4-01	126.	0 (3)
N1 ⁱⁱ —Cu1—O3		106.90 (12)	02—0	4—C3	117.2	2 (3)
O2—Cu2—O2 ⁱ		180.00 (15)	01—0	4—C3	116.	8 (3)
O2—Cu2—N4 ⁱ		90.66 (10)	N2—N	1—Cu1	129.	6 (2)
O2 ⁱ —Cu2—N4 ⁱ		89.34 (10)	N2—N	1—Cu1 ⁱⁱ	124.	8 (2)
O2—Cu2—N4		89.34 (10)	Cu1—	N1—Cu1 ⁱⁱ	102.	16 (11)
O2 ⁱ —Cu2—N4		90.66 (10)	N3—N	12—N1	178.	7 (4)
N4 ⁱ —Cu2—N4		180.0	N5—N	4-Cu1 ⁱ	122.	3 (2)
S1—C1—H1A		109.5	N5—N	[4—Cu2	120.	7 (2)
S1—C1—H1B		109.5	Cu1 ⁱ —	N4—Cu2	104.	04 (11)
H1A—C1—H1B		109.5	N6—N	15—N4	178.	3 (4)
S1—C1—H1C		109.5	C4—0	1—Cu1	128.	8 (2)
H1A—C1—H1C		109.5	C4—0	2—Cu2	131.	9 (2)
H1B—C1—H1C		109.5	S1—O	3—Cu1	124.	36 (14)
S1—C2—H2A		109.5	O3—S	1—C2	104.	30 (19)

S1—C2—H2B	109.5	O3—S1—C1	105.62 (19)
H2A—C2—H2B	109.5	C2—S1—C1	97.6 (3)
S1—C2—H2C	109.5		
01—Cu1—N1—N2	-175.2 (4)	N4 ⁱ —Cu1—O1—C4	35.2 (3)
N4 ⁱ —Cu1—N1—N2	-34.7 (4)	N1—Cu1—O1—C4	176.1 (5)
N1 ⁱⁱ —Cu1—N1—N2	159.2 (5)	N1 ⁱⁱ —Cu1—O1—C4	-158.9 (3)
O3—Cu1—N1—N2	53.6 (4)	O3—Cu1—O1—C4	-52.0 (3)
O1—Cu1—N1—Cu1 ⁱⁱ	25.6 (6)	O1—C4—O2—Cu2	-1.5 (6)
N4 ⁱ —Cu1—N1—Cu1 ⁱⁱ	166.06 (14)	C3—C4—O2—Cu2	177.6 (3)
N1 ⁱⁱ —Cu1—N1—Cu1 ⁱⁱ	0.0	N4 ⁱ —Cu2—O2—C4	-34.0 (3)
O3—Cu1—N1—Cu1 ⁱⁱ	-105.65 (14)	N4—Cu2—O2—C4	146.0 (3)
O2—Cu2—N4—N5	-27.1 (3)	O1—Cu1—O3—S1	-177.11 (17)
O2 ⁱ —Cu2—N4—N5	152.9 (3)	N4 ⁱ —Cu1—O3—S1	90.44 (18)
O2—Cu2—N4—Cu1 ⁱ	114.98 (12)	N1—Cu1—O3—S1	-7.41 (19)
O2 ⁱ —Cu2—N4—Cu1 ⁱ	-65.02 (12)	N1 ⁱⁱ —Cu1—O3—S1	-87.08 (18)
O2—C4—O1—Cu1	1.1 (5)	Cu1—O3—S1—C2	-173.7 (2)
C3—C4—O1—Cu1	-178.1 (3)	Cu1—O3—S1—C1	83.9 (2)
C			

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z.

